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Abstract. We examine the existence of right-hand eigenstates (or eigenkets) of the boson creation opera-
tor a† and determine their coordinate and their Bargmann representation. The eigenkets of the creation
operator are ultrasingular and cannot be considered as a limiting case of normalizable states. Applications
of these eigenstates as auxiliary states for purposes of representation of states by path integrals over coher-
ent states are discussed. A completeness relation for coherent states on paths through the complex plane
is derived and special examples of its application are considered.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements

1 Introduction

It is well-known [1,2] that the coherent states are the
eigenkets of the boson annihilation operator a. Although
nonorthogonal to each other for different eigenvalues but
complete (and even overcomplete), the set of coherent
states plays an outstanding role in the development of
quantum optics since the sixties of past century and found
many important applications. As to the question whether
the creation operator a† does possess (right-hand) eigen-
states or not, there are different kinds of answers: the
usual one is that a† has no normalizable eigenstates [3]
which found introduction into monographs of quantum op-
tics, e.g. [4] and textbooks of quantum mechanics, e.g. [5]
(Chap. V, Sect. 32). This, in principle, right answer is eas-
ily understood and can be proved but it is only half the
truth. The other possible answer is that a† possesses non-
normalizable right-hand eigenstates which play an impor-
tant role for auxiliary purposes although they are not real-
izable in physical devices [6–11]. Then it is the problem to
construct these eigenstates in explicit way and to demon-
strate their potential capabilities for applications. In [12],
the problem of the eigenstates of the creation operator is
solved for the paraparticle (parabose and parafermi) case
and is applied to obtain resolutions of unity by contour
integrals.

The main purpose of the present paper is the deriva-
tion of the eigenstates of the boson creation operator
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in different representations (Fock-state representation,
Bargmann representation, position and momentum rep-
resentation) and to show their role as auxiliary states for
the problem of representation of arbitrary states by path
integrals over coherent states. The importance of these
representations is the possible reduction of many linear
physical transformations of a state (e.g., time evolution
processes, amplification and attenuation, damping or de-
cay) to the superposition of the corresponding simpler
transformations of the coherent states. The derivations to
the eigenvalue problem, we make in two essentially differ-
ent approaches. In Section 2, we make the derivation from
the recurrence relations for the coefficients in the Fock-
state expansion, where we have to apply known relations
for multiplication of derivatives of the delta function with
power functions. Before this, we show in Section 1, how
plausible looking considerations can lead to the conclu-
sion of the nonexistence of these eigenstates. In Section 3,
we start from the eigenvalue problem for arbitrary linear
combinations of a boson annihilation and creation opera-
tor and derive the eigenstates of the creation operator as
an ultrasingular limiting case. This derivation possesses
the advantage that it sets the eigenstates of the creation
operator in relation to a very large class of states which are
the normalizable squeezed coherent states with the coher-
ent states as one limiting case and their nonnormalizable
extensions comprising the eigenstates of the canonical op-
erators Q and P . In Section 4, we give the explicit form
of the representation of states by path integrals over co-
herent states and extend this in natural way to single and
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double path integral representation of operators. As ex-
amples, we consider the path integral representation of
the annihilation and creation operator. In application to
the density operator of a state this leads to the possibility
of representation of mixed states by double path integrals
over coherent states.

Let us first consider usual arguments for the impossi-
bility of normalizable eigenkets of the boson creation op-
erator. Suppose a† possesses eigenstates |z〉# to complex
eigenvalues z according to

a† |z〉# = z |z〉# , (1)

where the subscript “#” indicates that the state concerned
belongs to a† (in [12] is used instead the superscript “ ′ ”).
Then in the coordinate representation 〈q|z〉#, we have
with Q→ q, P → −i∂/∂q (we set ~ = 1)

z 〈q|z〉# = 〈q| a† |z〉# =
1√
2
〈q| (Q− iP ) |z〉#

=
1√
2

(
q − ∂

∂q

)
〈q|z〉# . (2)

With the initial condition 〈0|z〉# = f(z), this leads to the
solution

〈q|z〉# = exp
(
q2

2

)
exp

(
−
√

2zq
)
f(z), (3)

which, obviously, is nonnormalizable as function of q.
These arguments can also be obtained in the following
modified way. Using the completeness of the number ba-
sis |n〉, one has

|z〉# =
∞∑
n=0

|n〉 〈n|z〉# . (4)

As a result of 〈n|a† =
√
n 〈n−1|, one derives in connection

with (1) the recurrence relations

0 = z 〈0|z〉# , 〈0|z〉# = z 〈1|z〉# ,
√

2 〈1|z〉# = z 〈2|z〉# , ...,
√
n 〈n− 1|z〉# = z 〈n|z〉# , n = 1, 2, ... (5)

This can lead to the (incorrect) conclusion that for z 6= 0,
all coefficients 〈n|z〉 have to be vanishing but then remains
the case z = 0. For example, Davydov pointed out that
according to (5), if z = 0, we have 〈n|z〉# = 0 for all
n from the second and the following equations in (5). If
z 6= 0, it follows from first equation in (5) that 〈0|z〉# = 0.
Hence from (5) it can be seen that 〈n|z〉# = 0 is still true
for n = 1, 2, ... that means for all n. Thus it is asserted
that |z〉# = 0 and no eigenstate of a† exists. However, the
above reasoning is actually not rigorous since the equa-
tion which looks like zf(z) = 0 in form has the solu-
tion f(z) = cδ(z) for real z with arbitrary coefficient c
(e.g., [13]). So we should find the eigenfunctions of the

creation operator a† in δ-function form but the situation
is more complicated when z are arbitrary complex num-
bers. In this case, one has to look to δ(z) as to an ana-
lytic functional over a basis space of entire functions which
guarantees the necessary extension of the generalized func-
tion δ(z) to a linear functional over the complex plane.

Due to its high singularity, the eigenkets of the cre-
ation operator are not realizable states in physical de-
vices. Nevertheless, they play an important role as auxil-
iary states for decompositions of normalizable states into
path and contour integrals over coherent states [6–12].
In this regard the situation is similar to the eigenstates
of the position and momentum operator which lead to
the representation of states by wave functions. However,
the eigenstates of the creation operator are “more singu-
lar” compared with the eigenstates of position and mo-
mentum operator and cannot be normalized by means of
the delta function. In this regard, we have here another
situation as in the mentioned case. All these states can
be embedded into a larger class of states which are the
eigenstates of arbitrary linear combinations a+ ζa† of an
annihilation and creation operator [9]. For |ζ| < 1, the
eigenstates of a+ ζa† are normalizable squeezed coherent
states. For |ζ| = 1, the eigenstates of a + ζa† are identi-
cal with the eigenstates of the rotated canonical operator
R(ϕ)Q(R(ϕ))† with R(ϕ) ≡ exp(iϕa†a) the rotation oper-
ator and are normalizable by means of the delta function
(weakly nonnormalizable states). In the special case ϕ = 0
this leads to the eigenstates |q〉 of the operator Q and in
case ϕ = π/2 to the eigenstates |p〉 of the operator P .
Finally, for |ζ| > 1, the eigenstates become ultrasingular
and make (with appropriate standardization) in the lim-
iting case |ζ| → ∞ the transition to the eigenstates of the
creation operator (strongly nonnormalizable states). This
is represented more in detail in Section 3 after having de-
veloped the Fock-state representation of the eigenkets of
the creation operator in a more elementary way.

2 Fock-state expansion and Bargmann
representation of eigenkets of the creation
operator

In this section, we derive first the Fock-state expansion
of the eigenstates of the creation operator a† in analytic
form which we denote by |(z)〉#

|(z)〉# =
∞∑
n=0

|n〉〈n|(z)〉#,
∂

∂z∗
|(z)〉# = 0. (6)

The recurrence relations (see Eq. (5)) to this ansatz can
be written in the form

0 = z 〈0|(z)〉# , 〈0|(z)〉# =
zn√
n!
〈n|(z)〉#, (7)
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and can be solved that leads to the following Fock-state
expansion of the eigenkets of the creation operator [6–12]

|(z)〉# =
∞∑
n=0

(−1)n√
n!

δ(n)(z)|n〉, (8)

where δ(n)(z) denotes the nth derivative of δ(z). For the
purpose of proof, we can use the identity zδ(n)(z) =
−nδ(n−1)(z) or, more generally,

zlδ(n)(z) = (−1)l
n!

(n− l)!δ
(n−l)(z), l, n = 0, 1, ...,

(9)

for arbitrary nonnegative integer l and n (proof, e.g., [14]).
We have set the complex variable z in |(z)〉# into round
brackets to show that the states in this standardization
depend on z in analytic way without dependence on the
complex conjugated variable z∗. The solution (8) can also
be represented in the following form

|(z)〉# = exp
(
−a† ∂

∂z

)
δ(z)|0〉 · (10)

We now derive the Bargmann representation of the states
|(z)〉# and introduce the notations

|(z)〉 ≡ exp
(
za†
)
|0〉 =

∞∑
n=0

zn√
n!
|n〉,

〈(z∗)| ≡ 〈0| exp (z∗a) =
∞∑
n=0

z∗n√
n!
〈n|. (11)

The states |(z)〉 and 〈(z∗)| are the analytic coherent states
without the normalization factor exp (−zz∗/2) present in
the usual (normalized) coherent states |z〉 that is shown
again in the notations by setting z and z∗ into circu-
lar brackets (sometimes, analytic coherent states are de-
noted by ‖z〉 that, however, becomes nonunique and un-
favourable in scalar products). Furthermore, deviating
from Dirac’s convention for bra-states, we denote the ad-
joint states 〈(z∗)| with the genuine variable z∗ on which
they depend in analytic form. For the scalar products of
the eigenkets (10) with the analytic coherent states (11),
we find

〈(z)|(z′)〉# = δ(z − z′). (12)

This is the Bargmann representation [1,2,15] of the eigen-
kets of the creation operator and it is in considered case
not a usual entire function such as for normalizable states
but a generalized function in form of an analytic func-
tional. One can look to (12) also as to a biorthogonal-
ity relation. The coherent states as eigenstates of a non-
Hermitian operator are nonorthogonal to each other for
different eigenvalues but together with the eigenstates of
the creation operator they form a biorthogonal (or dual)
system of states normalized by means of the delta func-
tion.

The generalized functions δ(n)(z − z′) (deriva-
tives of δ(z − z′)) are defined as linear functionals〈
δ(n)(z − z′), ϕ(z)

〉
over a certain space of entire basis

functions ϕ(z) ∈ Z corresponding formally to integrals
over paths P through the complex plane in following way〈

δ(n)(z − z′), ϕ(z)
〉
≡
∫
P

dzδ(n)(z − z′)ϕ(z)

= (−1)nϕ(n)(z′). (13)

Now, by using the representation by path integral, we find
from equations (11, 12)∫
P

dz|(z)〉 #〈(z)| =
∫
P

dz
∞∑
m=0

∞∑
n=0

(−1)nzmδ(n)(z)√
m!n!

|m〉〈n|

=
∞∑
n=0

|n〉〈n| = I, (14)

where I is the identity operator in the Hilbert (Fock)
space. With #〈(z)| we have denoted the adjoint state to
|(z∗)〉# in the following way (also deviating from Dirac’s
rule and thus writing the genuine complex variable on
which it depends; we mention here that in [12] this prob-
lem is solved in a slightly different way)

#〈(z)| ≡ 〈0| exp
(
−a ∂

∂z

)
δ(z)

=
∞∑
n=0

(−1)n√
n!

δ(n)(z)〈n|. (15)

Thus we have obtained a resolution of the identity by pairs
of dual coherent states |(z)〉 or eigenkets of the annihi-
lation operator and eigenbras #〈(z)| of the annihilation
operator. This can be considered as a completeness rela-
tion of the coherent states over arbitrary paths through
the complex plane. In (14), it is difficult to distinguish to
which side the index “#” belongs. However, both variants∫

P
dz|(z)〉

{
#〈(z)|

}
=
∫
P

dz
{
|(z)〉#

}
〈(z)| = I, (16)

are true and, in principle, this nonuniqueness even could
remain open without leading to errors. In Section 4, we
use the completeness relation (14) to get representations
of states by path integrals over coherent states.

3 Eigenstates of creation operator
as nonnormalizable ultrasingular squeezed
coherent states

We now describe another very instructive way to the eigen-
kets of the creation operator. The right-hand eigenstates
of the creation operator can be obtained as an ultrasin-
gular limiting case of nonnormalized squeezed coherent
states [9].
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Squeezed coherent states can be introduced as solu-
tions of the eigenvalue problem for an arbitrary linear
combination of a boson annihilation and creation oper-
ator in the following form

(a+ ζa†)|(α, ζ)〉 = α|(α, ζ)〉, α, ζ ∈ C, (17)

to arbitrary complex eigenvalues α and with an arbitrary
complex parameter ζ. The general solution of this eigen-
value problem can be represented in the following nonnor-
malized form by application of a nonunitary operator onto
the vacuum state

|(α, ζ)〉 ≡ exp
(
αa† − ζ

2
a†2
)
|0〉 · (18)

This can easily be verified by applying the operator iden-
tity (I is identity operator in Hilbert space of states)

exp
(
−αa† +

ζ

2
a†2
)(

a+ ζa†
)

exp
(
αa† − ζ

2
a†2
)

=

a+ αI, (19)

onto the vacuum state |0〉 using a|0〉 = 0. The oper-
ator identity (19) can be derived as the special case
f(B) = B = a + ζa† of the following well-known op-
erator identity for arbitrary operators A and B (some-
times called Baker-Campbell-Hausdorff formula but the
genuine Baker-Campbell-Hausdorff formula concerns the
much more entangled case of the product of two Lie group
operators in the exponential mapping from Lie algebra to
Lie group)

exp(A)f(B) exp(−A) =

f

(
B +

1
1!

[A,B] +
1
2!

[A[A,B]] + ...

)
. (20)

From (18), using the generating function for Hermite poly-
nomials Hn(x), the following Fock-state representation of
the states (18) can be obtained [9,16,17]

|(α, ζ)〉 =
∞∑
n=0

(√
2ζ
)n

2n
√
n!

Hn

(
α√
2ζ

)
|n〉 · (21)

The parameter α is an arbitrary complex displacement pa-
rameter and ζ an arbitrary complex squeezing parameter.
The states (18) are nonnormalized but depend in analytic
way on both variables α and ζ. This was called the nonuni-
tary approach to squeezed coherent states [16,17]. The ad-
joint states, we denote (again deviating from Dirac’s rule)
by the genuine analytic variables on which they depend
as follows

〈(α′, ζ′)| ≡ 〈0| exp
(
α′a− ζ′

2
a2

)
. (22)

By using the following generating function for products
of two Hermite polynomials (formula of Mehler, [18]

(Chap. 10.13))

∞∑
n=0

tn

2nn!
Hn(x)Hn(y) =

1√
1− t2

× exp

{
2xyt−

(
x2 + y2

)
t2

1− t2

}
, |t|2 < 1, (23)

we find for the scalar products of arbitrary squeezed co-
herent states (18)

〈(α′, ζ′)|(α, ζ)〉 =
1√

1− ζζ′

× exp

{
2αα′ − (ζ′α2 + ζα′2)

2(1− ζζ′)

}
, |ζ||ζ′| < 1, (24)

and in particular for the scalar product of squeezed coher-
ent states with themselves

〈(α∗, ζ∗)|(α, ζ)〉 =
1√

1− ζζ∗

× exp
{

2αα∗ − (ζ∗α 2 + ζα∗2)
2(1− ζζ∗)

}
, |ζ|2 < 1. (25)

This last formula shows that the states |(α, ζ)〉 are nor-
malizable and therefore physically realizable states only
for |ζ| < 1 and it gives the restriction for the possible
choice of a normalization factor. However, formula (24)
shows that the mutual scalar products of two states (18)
exists (that means the sums in the Mehler formula are ab-
solutely convergent) in every case when |ζ||ζ′| < 1. There-
fore, we can give the states |(α, ζ)〉 a sense for auxiliary
purposes if |ζ| ≥ 1. We mention here the following. In
the more common unitary approach to squeezed coherent
states, there is mostly used another complex squeezing
parameter ζ̄ connected with ζ by

ζ = ζ̄
th|ζ̄|
|ζ̄| , ζ̄ = ζ

Arth|ζ|
|ζ| ⇒

|ζ| = th|ζ̄|, |ζ̄| = Arth|ζ|. (26)

Contrary to the parameter ζ, the mostly used squeezing
parameter ζ̄ cannot be further extended to cases corre-
sponding to |ζ| ≥ 1 because |ζ| → 1 corresponds to
|ζ̄| → ∞ and it can only be applied for normalizable
squeezed coherent states. Furthermore, we mention that
the coherent component of the squeezed coherent states
given by the expectation value a of the annihilation oper-
ator a is related to the parameters α and ζ by

a ≡ 〈(α
∗, ζ∗)|a|(α, ζ)〉
〈(α∗, ζ∗)|(α, ζ)〉 =

α− ζα∗
1− ζζ∗ , α = a+ ζa∗.

(27)

Problems of the transition from nonunitary to unitary ap-
proach and vice versa are dealt with in detail in [17] and
for our present aim, we cannot longer stay here with them.
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We now divide the eigenvalue equation (17) with the
solution (18) by ζ and substitute α = ζz. After this it
takes on the form(

1
ζ
a+ a†

)
exp

(
ζza† − ζ

2
a†2
)
|0〉 =

z exp
(
ζza† − ζ

2
a†2
)
|0〉 · (28)

If we multiply this equation by the complex factor√
ζ/(2π) exp

{
−(ζ/2)z2

}
, we can write it in the form

(
1
ζ
a+ a†

)√
ζ

2π
exp

{
−ζ

2
(
zI − a†

)2} |0〉 =

z

√
ζ

2π
exp

{
−ζ

2
(
zI − a†

)2} |0〉 · (29)

This equation is appropriate to make the limiting transi-
tion ζ →∞ leading to

a†|(z)〉# = z|(z)〉#, (30)

where |(z)〉# is defined by

|(z)〉# ≡ lim
ζ→∞

√
ζ

2π
exp

{
−ζ

2
(
zI − a†

)2} |0〉
= δ

(
zI − a†

)
|0〉 · (31)

By Taylor series expansion of δ
(
zI − a†

)
in powers of the

creation operator a†, we find then

|(z)〉# =
∞∑
n=0

(−1)n

n!
δ(n)(z)a†n|0〉

=
∞∑
n=0

(−1)n√
n!

δ(n)(z)|n〉 · (32)

This is identical with (10) and (11). Summarizing equa-
tions (29–32), the eigenkets |(z)〉# of the creation operator
can be considered as the following limiting case of nonnor-
malized squeezed coherent states |(α, ζ)〉 in the nonunitary
approach

|(z)〉# = lim
ζ→∞

√
ζ

2π
exp

(
−ζ

2
z2

)
|(ζz, ζ)〉 · (33)

It does not play a role in which sector of the complex
plane ζ goes to infinity because the result of the limiting
procedure is considered as an analytic functional which
belongs to the space Z ′ of generalized functions over the
space Z [13].

The eigenkets |(z)〉# of the creation operator are
strongly nonnormalizable. There is yet another special
case of the states |(α, ζ)〉, where they are individually
nonnormalizable but become mutually normalizable by
means of the delta function. We call such states weakly
nonnormalizable. This is the case |ζ| = 1 and it leads to

the eigenstates of the canonical operators Q and P and,
more generally, to the eigenstates of the rotated canonical
operator Q that means of Q(ϕ) ≡ R(ϕ)Q (R(ϕ))† with
R(ϕ) ≡ exp(iϕa†a) the rotation operator. If we substitute
ζ = |ζ|ei2ϕ, then for |ζ| = 1, we can write the eigenvalue
equation (17) in the form

Q(ϕ)
∣∣(α, ei2ϕ)

〉
≡ 1√

2

(
e−iϕa+ eiϕa†

)∣∣(α, ei2ϕ)
〉

=
1√
2

e−iϕα
∣∣(α, ei2ϕ)

〉
≡ q
∣∣(α, ei2ϕ)

〉
· (34)

Therefore, we find

Q(ϕ)
∣∣∣ (√2eiϕq, ei2ϕ

)〉
= q

∣∣∣ (√2eiϕq, ei2ϕ
)〉
· (35)

This means that the eigenstates of Q(ϕ) are proportional
to the states

∣∣∣(√2eiϕq, ei2ϕ)
〉

and the proportionality fac-
tor can be used for a standardization. In particular, for
ϕ = 0, we obtain the eigenstates |q〉 of the canonical oper-
atorQ and for ϕ = π/2 the eigenstates |p〉 of the canonical
operator P (we renamed Q(π/2) → P and q → p in last
case). We can check by their scalar products or by using
the generating function for Hermite polynomials applied
to the exponential operators that the usual standardiza-
tion corresponds to

|q〉 =
1
π

1
4

exp
(
−q

2

2

)
exp

(√
2qa† − 1

2
a†2
)
|0〉,

|p〉 =
1
π

1
4

exp
(
−p

2

2

)
exp

(
i
√

2pa† +
1
2
a†2
)
|0〉 · (36)

This, together with (11), leads to the following wave func-
tions (in generalized sense) of the states |(z)〉# in position
and momentum representation

〈q|(z)〉# =
1
π

1
4

exp
(
−q

2

2

)
1√
−2π

exp
{

1
2

(
z −
√

2q
)2
}
,

〈p|(z)〉# =
1
π

1
4

exp
(
−p

2

2

)
1√
2π

exp
{
−1

2

(
z + i
√

2p
)2
}
·

(37)

It agrees in the form with (3), where the chosen stan-
dardization of |(z)〉# allowed to determine the function
f(z) explicitly. The eigenstates |q〉 correspond to squeez-
ing parameter ζ = 1 and the eigenstates |p〉 to squeez-
ing parameter ζ = −1. More generally, positive squeezing
parameter ζ = ζ∗ > 0 correspond to squeezing in direc-
tion of the coordinate q (abscissa) and negative squeezing
parameter ζ = ζ∗ < 0 to squeezing in direction of the
coordinate p (ordinate). The longer axis of the squeezing
ellipse is in the first case in p-direction and in the last
case in q-direction [16,17]. In the general case of complex
ζ, the squeezing direction is not identical with one of the
coordinate directions.

Coherent states as eigenstates of the annihilation oper-
ator correspond to squeezing parameter ζ = 0 within the
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class of squeezed coherent states |(α, ζ)〉 in the nonunitary
approach and eigenstates of the creation operator as has
been shown to the ultrasingular limiting case of parameter
ζ →∞. It is clear that one could form pairs of normaliz-
able squeezed coherent states |(α, ζ)〉 and nonnormalizable
squeezed coherent states |(α′, ζ′)〉 with ζζ′ = 1 which form
dual pairs and are appropriate to formulate completeness
relations on paths through the complex plane for expan-
sions by integrals over squeezed coherent states. We do
not develop this here in detail because the most impor-
tant case is the expansion in coherent states.

Thus we have shown that the nonunitary approach to
squeezed coherent states provides besides the usual nor-
malizable squeezed coherent states very important classes
of nonnormalizable states which play a role as auxiliary
states for different expansions of states. In case of the
eigenstates |q〉 and |p〉 of the canonical operatorsQ and P ,
this is well-known, whereas in case of the eigenstates |z〉#
this is little known up to now. The approach to the prob-
lem of eigenstates of the creation operator via the ultrasin-
gular limiting case of nonnormalized (analytic) squeezed
coherent states is an alternative approach to the direct
solution of this problem given in Section 2 and provides a
deeper insight into the problem with new perspectives.

4 Path integrals over coherent states

Using the completeness relation (14), we may obtain a
representation of arbitrary states |ψ〉 by path integrals
over coherent states in the following way

|ψ〉 =
∫
P

dz|(z)〉 #〈(z)|ψ〉 · (38)

Thus we have to calculate the scalar products #〈(z)|ψ〉
of the state under consideration with the eigenstates of
the creation operator which play a role as auxiliary states
for obtaining the representation by a path integral over
analytic coherent states |(z)〉. We now consider examples.

For normalized coherent states |α〉, we find

|α〉 = exp
(
−αα

∗

2

)
exp

(
αa†
)
|0〉,

#〈(z)|α〉 = exp
(
−αα

∗

2

)
δ(z − α), (39)

and the coherent state is represented by a delta function
of the complex variable which is an analytic functional.
Therefore, an arbitrary finite superposition of coherent
states (Schrödinger cat state) provides a path integral rep-
resentation with an integral kernel in form of a sum over
delta functions with support at the positions of the coher-
ent states and with corresponding coefficients

|ψ〉 =
n∑
k=1

λk|αk〉,
n∑
k=0

|λk|2 = 1,

#〈(z)|ψ〉 =
n∑
k=0

λk exp
(
−αkα

∗
k

2

)
δ(z − αk). (40)

As a more general example compared with (39), we con-
sider squeezed coherent states |(α, ζ)〉 in the nonunitary
approach which has been discussed in preceding section
for other purpose and which are defined by (18) or (21).
According to (38), we have to calculate their scalar prod-
ucts with the eigenstates of the creation operator that can
be accomplished in the following way

#〈(z)|(α, ζ)〉 = 〈0| exp
(
−a ∂

∂z

)
exp
(
αa†− ζ

2
a†2
)
|0〉δ(z)

= 〈0| exp
(
αa† − ζ

2
a†2 + ζa†

∂

∂z

)
× exp

(
−a ∂

∂z

)
|0〉

× exp
(
−α ∂

∂z
− ζ

2
∂2

∂z2

)
δ(z)

=
1√
−2ζπ

exp
(

(z − α)2

2ζ

)
· (41)

In the first step, we changed the order of operations
in the scalar product using the operator identity (20)
with f(B) = exp(B) and A = −a(∂/∂z), B =
αa† − (ζ/2)a†2. The sequence of “box-in-box” commuta-
tors B, [A,B], [A[A,B]], ... terminates after the third term
for the considered special operators. The operator which
acts in (41) onto the delta function is a convolution oper-
ator which leads to the result written in the last line. This
can be proved, for example, by Fourier transformation and
its inversion.

By inserting (41) into (38), we obtain the following rep-
resentation of (nonnormalized) squeezed coherent states
by path integrals over nonnormalized (analytic) coherent
states

|(α, ζ)〉 =
1√
−2ζπ

∫
P

dz exp
(

(z − α)2

2ζ

)
|(z)〉 · (42)

The integration path P through the complex plane is
widely deformable but has to begin for convergence of the
integral in infinity of one sector where the Gaussian func-
tion exp

{
(z−α)2/(2ζ)

}
vanishes and has to end in the op-

posite sector. As mentioned in Section 3, for squeezing in
q-direction (longer axis of squeezing ellipse in p-direction),
we have ζ = ζ∗ > 0 and we can choose an integration path
parallel to the y-axis through the point z = α of the vari-
able z = x+ iy that leads to the specialization of (42)

|(α, ζ)〉 =
1√

2|ζ|π

∫ +∞

−∞
dy exp

(
− y2

2|ζ|

)
|(α+ iy)〉,

ζ = ζ∗ > 0. (43)

For squeezing in p-direction (longer axis of squeezing el-
lipse in q-direction), we have ζ = ζ∗ < 0 and we can
choose an integration path parallel to the x-axis through
the point z = α of the variable z = x + iy that leads to
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the specialization of (42)

|(α, ζ)〉 =
1√

2|ζ|π

∫ +∞

−∞
dx exp

(
− x2

2|ζ|

)
|(α + x)〉,

ζ = ζ∗ < 0. (44)

The weight functions are in both cases normalized
Gaussian functions [19,20]. This can easily be understood
in an illustrative way as weighted superpositions of cir-
cles on a straight line standing for the coherent states
and leading to ellipses with the longer axis along this line
and standing for the squeezed coherent states. However,
the more general formula (42) admits deformations of the
most simple integration paths chosen in (43) and (44). The
left-hand sides of equations (42–44) can be converted to
squeezed coherent states in the unitary approach [9,17].
However, this destroys a little the simplicity and harmony
of the representations (42–44) because this is a nonana-
lytic approach and then the complex conjugated variables
α∗ and ζ∗ to α and ζ appear additionally in the formulae.
The same is if we use the usual normalized coherent states
|z〉 in the path integral representations.

As a further example of state representation, we con-
sider Fock states |n〉. From (15), we find

#〈(z)|n〉 =
(−1)n√
n!

δ(n)(z), (45)

and the path integral (38) takes on the form

|n〉 =
∫
P

dz
(−1)n√
n!

δ(n)(z)|(z)〉

=
1√
n!

∫
P

dzδ(z)
∂n

∂zn
|(z)〉

=
1√
n!

{
∂n

∂zn
|(z)〉

}
z=0

· (46)

The correctness of this representation of Fock states can
be directly checked from the definition of the analytic co-
herent states |(z)〉 in (11). In case that the Fock-state ex-
pansion of a considered state is known, by using backwards
the origin of the right-hand side of (46) from a path inte-
gral, it should be possible to reconstruct the path integral
representation of the considered state.

The completeness relation in the two variants (16) can
be used to obtain operator representations by path inte-
grals over nonnormalized eigenstates of the annihilation
and creation operator. The boson annihilation and cre-
ation operator themselves can be represented by

a =
∫
P

dz z|(z)〉 #〈(z)|, a† =
∫
P

dz z|(z)〉# 〈(z)|. (47)

For the density operator %, one can find 4 possible repre-
sentations by double path integrals over analytic coherent
states, for example

% =
∫
P

dz
∫
P′

dz′|(z)〉
(

#〈(z)|%|(z′)〉#
)
〈(z′)|. (48)

As was discussed in [21], this representation is related
to the complex P -representation of Drummond and
Gardiner [22] which is a special case of a class of gen-
eralized P -representations.

5 Conclusion

We have derived the right-hand eigenstates of the creation
operator and have used them to formulate a completeness
relation for coherent states on arbitrary paths through the
complex plane. The highly singular eigenkets of the cre-
ation operator are dual (or biorthogonal, more specificly)
to coherent states as the eigenkets of the annihilation oper-
ator. They play an important role as auxiliary states which
are necessary to derive the explicit form of the expansion
of arbitrary states by path integrals over coherent states.
The introduction of the eigenstates of the creation oper-
ator as analytic functionals and of the coherent states as
analytic functions of the complex variable z makes it pos-
sible to give a formulation where the integration paths can
be deformed. On the other hand this means that the inte-
gration paths can be chosen in appropriate way depending
on the physical content of the states as has been discussed
for squeezed coherent states. The coherent states in the
whole complex plane are overcomplete and one can select
different complete subsets of coherent states as basis for
the representation of arbitrary states. For example, the co-
herent states are also complete on a variety of contours in
the complex plane. Using Cauchy’s integral formula, this
gives the possibility to derive representations of states by
contour integrals over coherent states [6–12,23,24] that we
did not discuss here. By means of the Stokes’ formula and
Green’s function, one can establish the relations between
representations by contour, area and path integrals [10].
Representations of states by path and contour integrals
over coherent states are usually more illustrative than by
integrals over the whole complex plane since the last are
highly nonunique in their form due to the overcomplete-
ness of the coherent states in the complex plane. This
becomes obvious if we compare the corresponding repre-
sentations for coherent states themselves which are delta-
function kernels in path integrals over coherent states and
Gaussian functions in phase-space integrals.
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